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Abstract

This project focused on the development of a new method for determining residual stress fields in poly-
crystalline metallic alloys using high energy synchrotron x-ray diffraction measurements and a finite
element discretization of the workpiece. At each diffraction volume, the diffraction data provides a link
to the single grain scale stresses through pole figures of lattice strain. An optimization method produces
the macroscale residual stress for every point in the body that satisfies equilibrium on the macroscale
and is simultaneously consistent with the grain scale stress at the diffraction volumes. The method was
demonstrated on four different test scenarios: (i) conventional nickel shrink-fit disk (producing a 2D stress
field), (ii) a tapered nickel shrink fit disk (producing a 3D stress field), (iii) a titanium shrink fit disk
(demonstration with hcp material and (iv) a shot peened sample (demonstration on an important appli-
cation. All experiments were conducted at the Advanced Photon Source. The synchrotron radiation and
high-throughput area detectors were ideal for proving up the new method. This final report described
the four application and summarizes the project

1 Method Overview

Figure 1 depicts an overview schematic of the approach we have employed for measuring lattice strains and
determined residual stress distributions within an engineering component. The upper left corner shows a
shrink fit disk whose stress field varies over the disk. As can be seen, the radial and circumferential normal
stresses can be approximated using a closed form solution based on the magnitude of the interference and
the material property of the disk. However, the determination of the actual stress field in the disk remains
a challenging problem.

The methodology we have developed quantifies the residual stress tensor field over a component
by coupling lattice strains measured using high-energy, synchrotron x-ray diffraction with a solution
framework that simultaneously determines the stress distribution over all crystal orientations AND the
macroscopic stress distribution. The technique is a non-destructive diffraction method. However, it differs
from many current non-destructive measures of residual stress by utilizing a large number of lattice strain
measurements that are not limited to the surface (or near surface) of a part. Synchrotron x-rays and
high speed detectors enable making thousands of lattice strain measurements within a body in reasonable
experimental times. The challenge as it relates to residual stress analyses is how to use this abundance
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Figure 1: Schematic of the multiscale method for determining the residual stress in engineering compo-
nents. The method considers the material response at both the macro- and micro-scales. The method is
set up as an objective function with explicit constraints, relating the macroscopic stress distribution to
the diffraction volume average crystal stress.

of measurements to fully characterize the state of stress within an engineering component.
Rather than interpreting the lattice strain data obtained as a particular material point (or a diffraction

volume) as simple strain gauge measurements and using isotropic material property to determine the
components of residual stresses in an engineering component, we start with the assumption that the
average of the crystal scale stresses properly integrated over an aggregate of crystals should coincide with
the stress in the contiuum scale at a particular material point. With this in mind, we interpret the lattice
strain data as a crystallographic fiber average quantity described as

εqq =

∫
Υc‖q

A(r)q · ε(r) · qdr

∫
Υc‖q

A(r)dr
(1)

.
In this equation, εqq is the lattice strain measured along a particular scattering direction, q, for a

particular family of family of crystallogprahic plane, c, A(r) is the crystallographic orientation distribu-
tion function of the diffraction volume and ε(r) is the lattice strain distribution function (LSDF) - an
orientation dependent elastic strain tensor.
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Using appropriate anisotropic elasticity, Equation 1 can be rewritten as

εqq =

∫
Υc‖q

A(r)q · S(r)σ(r) · qdr

∫
Υc‖q

A(r)dr
(2)

where S(r) is the anisotropic single crystal compliance and σ(r) is the orientation dependent crystal
stresses or the stress orientation distribution function (SODF).

Using the SODF and the orientation distribution function of the diffraction volume, the stress at the
continuum scale is obtained by

Σe =

∫
Ωfr

A(r)σ(r)dr

∫
Ωfr

A(r)dr
(3)

where Σe is the stress at the continuum scale and Ωfr is the fundamental region of orientation space for
a particular crystal symmetry.

A common method for representing and computing a field over the crystallographic orientation space
is to use a piecewise interpolation functions over the crstallogrpahic orientation space [1]. However, this
can be costly when many diffraction volumes are considered simultaneously. Instead, we use a set of
orthonormal functions defined over orientation space1 and corresponding coefficients. For example, a
component of σ(r) at a particular diffraction volume, denoted as σpq(r), is represented as

σpq(r) =
mmax∑
m=1

Hm(r)wm
pq (4)

where σpq(r) is the pq component of σ(r), Hm(r) is the mth orthnomal function defined over orientation
space, wm

pq is the corresponding coefficient, and mmax is the maximum number of orthonomal functions
considered.

Interrogating many diffraction volumes over the engineering component allows us to obtain Σe at those
diffraction volumes. However, Σe does not necessarily satisfy the boundary conditions of the engineering
component or equilibirum. To utilize these pieces of information from the the continuum scale and Σe

information obtained from the crystal length scale, piecewise interpolation functions over the physical
body of the engineering component are used to determine the residual stress field (Σh). This field not
only satisfies the boundary conditions and equilibrium at the continuum scale but also matches Σe where
diffraction measurements are made2.

In our first benchmarking effort to explore the capability of this new method, we determined the
distribution of stresses over an interference fit, hub-shaft assembly. There is a well-known analytic ap-
proximation of the circumferential and radial normal stresses. This sample, which was described in the
year 1 progress report, is one that has been used in previous residual stress analyses as a benchmarking
example. We measure lattice strain pole figures at a span of points over the component. As depicted in
Figure 1, the overall goal of our methodology is to then minimize a residual, Rs, that has been defined
over the part, which equates the macroscopic stress distribution to the volume averaged crystal stress at
a discrete number of the diffraction measurement locations. The resulting stress distributions over every

1These functions are known as spherical harmonic functions in quantitative texture analysis.
2The readers are referred to McNelis et al [2] and Demir et al [3] for a more detailed presentation of the method.
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aggregate within the component and over every orientation within each aggregate are constructed to best
match the strain pole figure data while satisfying stress equilibrium at the macroscale and the stress
boundary conditions of the specimen. Our formulation consists of finite element discretizations of both
the component itself and the space of all crystal orientations within an individual aggregate. Figure 1
depicts graphically the development of the macro- and micro-stress expressions.

The stress at the crystal scale is first established by making diffraction measurements at discrete points
over a quadrant of the sample. These diffraction measurements provide the projection of the crystal lattice
strain in many directions, and serve as an experimental constraint: any stress solution must produce lattice
strains in agreement with what is measured experimentally. Several Strain Pole Figures (SPFs), which
plot the projection of the strain tensor for certain lattice planes aligned with different sample directions,
are shown at the bottom-right of Figure 1. These experimental measurements serve as the driving force
for the solution method. Using these lattice strains, we can quantify the average stress tensor as a function
of crystal orientation in each diffraction volume. The process for doing so proceeds up the right hand side
of Figure 1. We choose to represent the orientation dependent crystal stresses in each diffraction volume
through a spherical harmonic expansion over orientation space. Several harmonic modes (evaluated over
orientation space) are provided in the upper-right of Figure 1, as well as an example of one component of
the crystal stress tensor for a diffraction volume. The set of unknowns for the description of the crystal
scale response are the coefficients in the harmonic expansion for each diffraction volume We can integrate
over orientation space in order to determine the crystal-averaged stress tensor for each diffraction volume.
These values define one half of the expression for the global residual.

These crystal averaged stresses are then related to the macroscopic stress through a novel solution
framework. The framework for the macroscopic description is provided along the left hand side of Figure 1.
The analytic solution for the principal stress components in the hub of the interference fit assembly is given
in the upper-left corner. It is this distribution that we are attempting to solve for using our multiscale
approach. As can be seen, the radial and circumferential stress vary with radial position. The actual
distribution may vary from this idealization. We first discretize the component using finite elements, and
represent the macroscopic stress distribution over the body as the mapping of the stress tensor at discrete
nodal points using finite element shape functions. We constrain the solution for the macroscopic stress
tensor field such that it is self-equilibrating over the body. The value of the macroscopic stress tensor
at these nodal points, Sl

ij , serve as the second set of unknowns in the problem statement. As described
in year 2 progress report, we have developed a moving least squares (MLS) formulation to decouple the
spatial relationship between the physical diffraction volume and the finite element mesh of the part. In
our year 1, the finite element mesh of the part was generated such that the centroid of a finite element
coincided with the location on the part where diffraction measurement took place. However, it may be
impossible to lay out a regular grid of measurement over a part. By introducing the MLS formulation,
the centroid of a finite element does not have to coincide with the location on the part where the lattice
strains are measured; this allows the multiscale optimization to deal with irregularly shaped parts and
use lattice strain measurements from irregularly located diffraction volumes.

The optimization is set up to simultaneously determine both the values of the macroscopic stress
tensor at the nodal points of the discretized part, as well as the series of spherical harmonic coefficients
describing the orientation dependent crystal stress in each diffraction volume. The method is unique
in that it contains information regrading both the micro- and macro-scale response of the component.
In residual stress analysis, stresses at different size scales are often referred to as ’types’ of residual
stress. Type I residual stress refers to a stress averaged over a volume containing many grains (usually
several thousand). Type II residual stress considers stress as a function of each crystal in the aggregate.
In the method we have outlined, the macroscopic residual stress at the nodal points of the part is a
type I residual stress. Meanwhile, the spherical harmonic coefficients that define the crystal stress in
each diffraction volume is similar in nature to type II residual stress. They differ somewhat in that the
crystal stress is averaged for all grains in that diffraction volume which have a common crystallographic
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(a) Sample geometry A. In this geometry, the center hole
of the hub is not tapered and the ideal stress field in the
hub is expected to be constant through the thickness and
only expected to vary in the x-y plane.

(b) Sample geometry B. In this geometry, the center hole
of the hub is tapered and the anticipated stress field in the
hub is expected to vary both in the x-y plane and through
the thickness.

Figure 2: Two shrink fit sample geometries considered in this work.

orientation.
In this project, we have developed a method for determining the 3D residual stress fields in poly-

crystalline components using high energy x-ray diffraction together with a finite element-based multiscale
optimization methodology. The two important aspects of the formulation are: (i) experiments to mea-
sure lattice Strain Pole Figures (SPFs) at multiple points throughout an engineering component using
synchrotron x-ray diffraction and (ii) a finite element based method for determining the stress distribu-
tions that best match the SPF data and are consistent with conditions such as stress equilibrium and
boundary conditions at the macroscale. A residual-based optimization formulated to determine the “best”
macroscopic stress distribution consistent with both the lattice strain measurements and the constraint
conditions from the macroscale.

2 Accomplishments

Two shrink-fit geometries were used (Figure 2) to develop and validate the methodology. The hub in
these geometries were manufactured from LSHR (Low Solvus High Refractory) nickel base alloy. For
sample geometry A, we were able to measure many SPFs for material points located throughout the
sample in the x-y plane using the SPF measurement technique [4, 2]. In this case, the stresses through
the thickness of the hub were expected to be constant and the material points through the thickness of the
hub at a particular (x,y) position were not distinguished. On the other hand, for sample geometry B, we
measured the SPFs for a material point located at a particular (x,y,z) by modifying the SPF measurement
technique and isolating a particular material point in thin the hub. Using these SPF measurements and
the multiscale optimization method, we were able to determine the 3D residual stress fields in sample A
and B non-destructively.

To test the new methodology, we attempted to quantify the residual stress field in a titanium com-
ponent. In this case, the hub in sample geometry A was manufactured from Titanium Ti-8Al-1Mo-1V
(Ti-811) alloy. A set of SPFs were measured in the hub. The SPF data were used to determine the
residual stress field in the hub employing our multiscale optimization. The SPF data were also used to
determine the residual stresses employing the conventional sin2 Ψ method at the material points where
the SPF data were obtained. The stresses these two approaches were compared.

We also attempted to expand the methodology to an industrial application. A LSHR tension sample
was shot-peened and the lattice strains at the material points located inside the sample were measured.
These strains were used in conjunction with the multiscale optimization method to determine the residual
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stress field introduced by the shot-peening process. These residual stresses were compared to the residual
stresses quantified by laboratory x-ray systems and the sin2 Ψ method.

3 Residual Stress in sample geometry A

The interference fit disk geometry particularly attractive for testing our methodology as a closed form
solution of the stress distribution in the hub exists. Figure 3 shows the comparison between the closed form
stress results and the stresses from out multiscale optimization method. Trends in the data should compare
to the closed form results. As can be seen, the stresses from the multiscale optimization method that uses
the strain pole figure measurements contain real artifacts that render the distributions less “perfect” than
the closed form solution. However, the trends from the analytic solution can be seen in data. The absolute
values are not exact matches but the comparison of the trends is extremely encouraging. The residual
stress field in this sample was also evaluated using the multiscale optimization method with the moving
least square formulation. As can be seen, the resulting stress distributions contain the same general stress
information as the constant stress element results shown in Figure 3 but appear to have smoother, more
physically realizable transition regions. We feel that the resulting stress solution using the MLS method
will produce greater accuracy and, more importantly, will decouple the diffraction measurements from
the underlying finite element mesh.

A paper describing the 2D results on the LSHR specimen was submitted to the Journal of Mechanics
and Physics of Solids and is in press [2]. A paper describing the multiscale optimization with moving least
squares formulation was submitted to Computer Methods in Applied Mechanics and Engineering [3].

4 Residual Stress in sample geometry B

Residual stress fields are not necessarily two dimensional. The next thrust in the project was focused on
creating the ability to measure lattice strain pole figures over an object with its stress field varying in all
three dimensions in a non-destructive manner and using these strain pole figure measurements with the
multiscale optimization method to determine the stress field in the object. For this objective, a sample
employing geometry B was manufactured.

Making subsurface lattice strain measurements presents a distinct experimental challenge. We made
use of the conical slit setup at APS 1-ID-C to measure the strain pole figures for many internal diffraction
volumes. Figure 4 shows a subset of SPFs obtained by the conical slit setup. In this figure, the radial
position on the hub, rS, is measured on the x-y plane of the sample and the azimuthal angle on the
hub, αS, is measured from the x-axis of the sample. When the interference is large, the magnitude of
lattice strains are large. If the interference is small, the magnitude of lattice strains are small. Also, the
lattice strains are larger at the inner radial position than those at the outer radial position. In total,
196 diffraction volumes located throughout the hub were interrogated and {111}, {200}, and {220} strain
pole figures were measured at each diffraction volume. It is also worthwhile to note that the highs and
the lows in the SPFs measured at αS = 0◦ and the highs and the lows in the SPFs measured at αS = 90◦

are αS = 90◦ apart. This is consistent with the anticipated state of stress in this sample.
Using these strain pole figures and the multiscale optimization method with moving least squares

formulation, the residual stress field in sample B were determined. Figure 5 shows the analytical interfer-
ence fit stress and the residual stress field obtained by using the strain pole figure measurements shown in
Figure 4 and the multiscale optimization method with moving least squares formulation. The results are
encouraging. The highs and the lows in the residual stress distribution are consistent with the interference
introduced by the sample geometry. This work was submitted to Experimental Mechanics [5].

6



Figure 3: Analytic shrink fit approximation (left) and residual stress distributions determined using the
strain pole figure measurements and our new formulation without the moving least squares formulation
(center) and with the moving least squares formulation (right).
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(a) The SPFs for {111} and {200} from several in-
ternal positions at rS = 6.85 mm and αS = 0◦.

(b) The SPFs for {111} and {200} from several in-
ternal positions at rS = 6.85 mm and αS = 90◦.

(c) The SPFs for {111} and {200} from several in-
ternal positions at rS = 7.80 mm and αS = 0◦.

(d) The SPFs for {111} and {200} from several in-
ternal positions at rS = 7.80 mm and αS = 90◦.

(e) The SPFs for {111} and {200} from several in-
ternal positions at rS = 9.30 mm and αS = 0◦.

(f) The SPFs for {111} and {200} from several in-
ternal positions at rS = 9.30 mm and αS = 90◦.

Figure 4: A subset of SPFs measured using the conical slit setup for sample geometry B. Figures 4(a),
4(a), and 4(e) show a set of SPFs from three rS positions along αS = 0◦. Figures 4(b), 4(d) and 4(f) show
a set of SPFs from three rS positions along αS = 90◦.
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(a) An approximation of the stress field in the interference
fit sample obtained by a 3D elastic FE simulation of a quar-
ter of the disk. The stress field is normalized by the maxi-
mum of the second invariant of the stress to show the antic-
ipated trends of the stress field. Two normal components
and one shear component of the stress, denoted by Σxx,
Σyy, and Σxy respectively, are shown. The values of the
other stress components are negligible. The second invari-
ant stress denoted by Σvm is also shown.

(b) The components of the 3D residual stress field and the von
Mises effective stress of the disk obtained by combining the SPF
data and the bi-scale optimization scheme are plotted over the
FE mesh of the disk. The coordinate system is the same as that
in Figure 5(a).

Figure 5: Analytical interference fit stress for sample geometry B and and the stress field obtained by
using the strain pole figure measurements shown in Figure 4.
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(a) The SPFs from inner most positions on the hub at αS = 0◦.

(b) The SPFs from inner most positions on the hub at αS = 90◦.

Figure 6: A subset of SPFs measured for the Ti-811 interference fit sample.

Figure 7: The {10.1} SPFs from at αS = 0◦ measured at several radial positions. Position 1 is the
innermost radial position and Position 20 is the outermost radial position.

5 Residual Stress in the Ti-811 sample

A titanium sample was manufactured using geometry A. The hub was made from a Ti-811 alloy. Similar
to the LSHR samples, strain pole figures were measured at several locations throughout the hub. Figures
6 and 7 show a subset of the strain pole figures measured for the Ti-811 sample. Similar to the LSHR
samples, the lattice strains are consistent with the anticipated stress distribution of the interference fit
geometry.

These strain pole figure data are used to determine the residual stress field in the hub. Figure 8 shows
the result. Again, the residual stress field determined from the experimental data and the multiscale
optimization method is similar to the anticipated stress in an interference fit geometry. However, unlike
the analytical solution where the Σh

xx and Σh
yy are mirror images of each other, the two components in

the residual stress field that we have determined from the SPF measurements show differences. This
is expected as obtaining a perfect interference around the azimuth of the hub (which is assumed in the
analytic solution for interference fit geometry) is difficult.

We also used the SPF measurements with the conventional sin2 Ψ method to determine the stresses at
several locations on the hub and compared these stresses with the 3D residual stress field that we obtained
using the multiscale optimization method. Using lattice strain data from {11.2} SPFs and appropriate
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Figure 8: The components of the 3D residual stress field determined from the strain pole figures and the
multiscale optimization method. The coordinate system is the same as that in Figure 5(a).

(a) The xx- and yy- components of residual stress at
αS = 0◦ obtained by the sin2 Ψ analysis using {11.2}
reflection and multiscale optimization stresses using
the full strain pole figure data.

(b) The xx- and yy- components of residual stress at
αS = 90◦ obtained by the sin2 Ψ analysis using {11.2}
reflection and the multiscale optimization stresses us-
ing the full strain pole figure data.

Figure 9: A comparison of xx- and yy- components of stresses obtained by the sin2 Ψ analysis and the
multiscale optimization method.

material properties for the sin2 Ψ, the xx- and the yy- components of stresses were found and were
compared to the those obtained by the multiscale optimization method. Figure 9 shows the comparison
between the two methods at αS = 0◦ and αS = 90◦. This figure shows that the stresses obtained by the two
methods can be significantly different (Figure 9(a)) or comparable (Figure 9(b)). Because the sin2 Ψ does
not compute the entire stress field and does not make use the macroscopic constraints such as equilibrium
while over simplifying the nature of the lattice strain measurements, we think that the residual stress field
obtained by the multiscale optimization method is more reliable. A journal manuscript for this work on
the titanium sample is in preparation.

6 Residual Stress field in a shot-peened sample

In collaboration with researchers at Wright Patterson AFB - Materials Directorate, a set of conical slit
experiments were performed on an Inconel 100 sample that has been subjected to shot peening. Figure 10
shows the geometry of the sample and lists the locations in the sample where x-ray diffraction experiments
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Figure 10: A schematic of the shot peened sample. The thickness through zS is 2 mm.

Figure 11: A schematic of the experimental geometry used to investigate the shot peened sample.

using the conical slit setup were performed. All surfaces of the sample were shot peened. Here, we assume
that the shot peened produces a stress distribution that is independent of xS. Figure 11 shows the
experimental geometry used to investigate the shot peened sample.

Figure 12 shows the lattice strains measured in normal incidence (zS parallel to the incident beam
path) at various yS positions for three crystallographic planes. Here, the stress in the shot peened sample
is assumed to be independent of xS and the location of the diffraction volumes only depends on yS and
zS. This figure shows that the magnitudes of lattice strains from the shot peening process are large near
the surface and are smaller in the interior. By yS = 0.500mm, the lattice strains are close to zero for all
three crystallographic planes.

While this does not cover the entire strain pole figure surface, a 3D residual stress field for the shot

Figure 12: A subset of the lattice strains measured in normal incidence (zS parallel to the incident beam
path) at various yS positions for three crystallographic planes.
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Figure 13: The finite element mesh used to perform the multiscale optmization method with the lattice
strain data. The xS-zS surface is a free surface and all other surfaces are symmetric surfaces where the
in-plane tractions vanish.

Figure 14: The components of the residual stress field obtained by the multiscale optimization method
using the lattice strains shown in Figure 12. The second invariant of the residual stresses is also plotted.

peened sample can be obtained. Mimicking the volume of material interrogated by the x-rays, the finite
element mesh of the sample is generated accordingly (Figure 13). Figure 14 shows the 3D residual stress
distribution over the shot peened sample. The components of stresses that show the largest magnitudes
are the 11- and the 33- components of stress while other components are closer to zero. Furthermore, as
we expect from the lattice strain measurements, the stresses show a large gradient along yS at the surface
than in the interior. This is also visible in the plot of the second variant of the residual stress.

We also investigated the relationship between the quality of electron back scattered diffraction (EBSD)
image and the residual stress field in the shot-peened sample. Figure 15 shows the region where the
sample for the EBSD experiment was extracted from the original piece of the shot-peened material and
the orientation map from the EBSD sample. The EBSD sample was extracted such that the it is from
the mid-plane of the original piece of the shot-peened material in the z-direction. This means that on the
EBSD map shown in Figure 15, the effects from the shot-peening process is concentrated at the top and
at the bottom of the EBSD map the material is close to its virgin state.

Along with orientation information for each point on the EBSD sample, the mean angle deviation
(MAD), band contrast (BC), and band slope (BS) data are available. These information can be used as
an indicator of large deformation experienced by the material [6]. Using the EBSD data shown in Figure
15, averages of MAD, BC, and BS values are computed for each y-layer. The y-coorindate in this case
is the distance from the shot-peened surface. Figure 16 shows the averages of MAD, BC, and BS values
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Figure 15: A schematic of the region where the sample for EBSD was extracted from the original piece
of shot-peened material and the orientation map obtained from EBSD scan. Colors denote orientations.

(a) The average mean angle devia-
tion (MAD) per layer vs. distance
from the surface plot.

(b) The average band contrast (BC)
per layer vs. distance from the sur-
face plot.

(c) The average band slope (BS) per
layer vs. distance from the surface
plot.

Figure 16: The results of the EBSD data.

plotted against the y-coordinate. The MAD value which indicates the angular deviation of the measured
unit cell from the ideal unit cell should be smaller if the interrogated material experienced small plastic
deformation. On the other hand, the BC and BS values are indicators of the Kikuchi pattern quality
and they are larger if the interrogated material experienced small plastic deformation. Figure 16 shows
that the MAD, BC, and BS values indicate a small layer (approximately 100 µm thick) with large plastic
deformation. The layers located below 100 µm have nearly constant values of MAD, BC, and BS values.
Comparing these plots with the effective stress shown in Figure 14, the layers of material with MAD, BS,
and BC values that indicate large plastic deformation are where the effective stress is large.

While further investigation is necessary, these results show that the method that we have developed
can be extended to real industrial applications.

7 Representation of orientation dependent crystal stresses

A component of orientation dependent crystal stress is represented by a set of orthonormal functions
defined over orientation space and corresponding coefficients. This was described in Equation 4. Using
this representation reduces the number of unknowns while enforcing a smooth variation of the orientation
dependent stresses.

σpq(r) =
mmax∑
m=1

Hm(r)wm
pq (5)

For example, if the orientation space is discretized by 600 independent nodes, the total number of un-
knowns necessary for reprensenting the orientation dependent crystal stresses at a particular diffraction
volume is 3,600. On the other hand, if the orientation dependent crystal stresses for a particular diffrac-
tion volume are represented by a set of orthonormal functions and corresponding coefficients, the total
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number of unknowns necessary is mmax × 6. This is quite beneficial when many diffraction volumes are
interrogated.

While this is a large reduction of number of unknowns, we explored the idea of further reducing
the number of unknowns by studying the relationhsip between the orientation dependent crystal stresses
and the orthonormal functions. To investigate this relationship, crystal-based elastoplastic finite element
simulations were performed using several instances of virtual polycrystals. From these simulations, it
was determined that only a subset of the orthogonal functions are necessary to represent σpq(r). This
work has not been implemented in our residual stress methodology yet but will be beneficial as we start
interrogating larger number of diffraction volumes in real engineering components.

8 Accomplishments and Future Directions

The project was extremely successful using several different metrics. At different times during the grant,
2 graduate students and 2 post-docs were supported. One masters thesis was completed with another
anticipated in May, 2013. A paper describing the 2D method on the LSHR has appeared [2]. The paper
describing the 3D experimental method [5] and the moving least squares method, [3], are in review. The
paper on the titanium is in preparation [5] and one more is in preparation [7]. The shot-peened work may
be written up for a paper but has certainly spawned a new White Paper written to the AFOSR proposing
a combined diffraction / process simulation method for measuring residual stress [8]. In this work, we
propose combining the biscale MLS method with reduced order simulations of shot peeing and laser
shock peening processes to measure residual stress then to tune the processing parameters to optimize
component performance.
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